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Abstract

The development of computational fluid dynamics (CFD) methods for unsteady acrodynamic analysis
is described. Special emphasis is placed on considerations that are required for application of the methods
to unsteady acrodynamic flow problems. Two broad categories of topics are discussed including grid
considerations and algorithm development considerations, and example calculations are presented to
illustrate the major points. Although the primary application of these CFD methods is to relatively
low-frequency oscillatory phenomena such as flutter, the ideas that are presented may be of value to
developers of computational acroacoustics methods for predicting high—frequency acoustics.

Introduction

Considerable progress in developing computational fluid dynamics (CFD) methods for aerodynamic
analysis has been made over the past two decades.!® Although the vast majority of this work has
been on the development of methods for steady-state acrodynamic applications, significant progress also
has been made in developing CFD methods for unsteady acrodynamic and acroelastic applications.2?
This latter work has been focused primarily on potential flow methods,* cither at the transonic small-
disturbance (TSD) or full-potential equation levels, although research is concentrated currently on
developing advanced codes for numerical solution of the Euler or Navier-Stokes equations.3

The development of methods for unsteady applications generally has lagged the development of steady
methods, primarily because of additional complicating considerations that arise for unsteady applications.
Therefore, the purpose of the paper is to describe the development of CFD methods for unsteady
acrodynamic analysis with special emphasis on the considerations that are required because of the unsteady
application of the methods. These considerations may be divided into two broad categories including
grid considerations and algorithm development considerations. In the category of grid considerations,
the paper discusses (1) the type of grid, (2) generation details, (3) boundary treatment, and (4) mesh
movement. In the category of algorithm development, the paper describes (1) spatial discretizations,
(2) emporal discretizations, and (3) adaption techniques. Also, although the primary application of the
unsteady aerodynamic methods described herein is to relatively low-frequency oscillatory phenomena
such as flutter, the ideas that are presented may be of value to developers of computational aeroacoustics
(CAA) methods for predicting high-frequency acoustics.



Grid Considerations

Type of Grid

The first topic in the category of grid considerations is whether a structured or unstructured grid is
used.’ Generally, either type of mesh topology is applicable to stcady or unsteady problems, and the use
of each has advantages and disadvantages. The majority of work that has been done in CFD over the
years has been on developing methods for use on computational grids that have an underlying geometrical
structure and thus are referred to as “structured” grids. For example, Fig. 1 shows a structured grid for the
NACA 0012 airfoil. The grid is of C-type topology, has 159 points in the wraparound direction, and 49
points in the outward direction. Unsteady applications of methods developed for structured grids generally
have been limited to relatively simple geometries such as airfoils, wings, and wing-body configurations.?
Extensions to more complex configurations often require more sophisticated meshing methodologies such
as blocked, patched, chimera, or hybrid type grids. These extensions, in tumn, significantly complicate the
solution algorithms. Other difficulties arise in moving the grid for unsteady or aeroelastic motion where
the grid must conform to the instantaneous shape of the geometry being considered.

An altemnative approach is the use of unstructured grids.® In two dimensions, these grids are
constructed from triangles, and in three dimensions, they consist of an assemblage of tetrahedral cells.
The triangles or tetrahedra arc oriented in an arbitrary way to conform to the geometry, thus making it
possible to treat very complicated shapes. Unsteady acrodynamic and aeroelastic applications of these
methods to complete aircraft configurations already have been made.” An unstructured grid for the NACA
0012 airfoil is shown in Fig. 2. The total grid has 3300 nodes and 6466 triangles. From the figure it
is obvious that the cells are arranged in an arbitrary manner to create a mesh about the airfoil. Figure
3 shows an example of a surface mesh representing the Boeing 747 transport configuration from an
unstructured tetrahedral mesh.” The total mesh has 101,475 cells for the half-span airplane. There are
also over 8000 triangles which lie on the boundaries of the mesh, which include the half-span airplane, the
symmetry plane, and the far-field boundaries. The figure demonstrates that additonal aircraft components
such as pylons and engine nacelles can be modeled easily with an unstructured grid. To further illustrate
the point, Fig. 4 shows the details of the grid and steady pressure coefficient contours on ‘the outboard
pylon and engine nacelle of the 747 airplane.” The pressure coefficients were computed using an Euler
code for a freestream Mach number M., of 0.84 and an angle of attack ap of 2.73°. -5 =~~~

Generation Details

Conceming grid generation details, for stcady-state external-flow applications, grids gencrally are
constructed to be fine near the body and coarse near the outer boundaries with some type of stretching in
between. This gridding philosophy is reasonably accurate (because of mesh fineness near the body) and
efficient (because of few cells in the far field where flow gradients are small) for steady problems but
may be inadequate for unsteady problems. For unsteady problems, waves that are propagating through
the mesh may be reflected intemally if the grid stretches too rapidly.'®!? To illustrate this problem,
Fig. 5 shows an example of internal grid reflections. The calculations were performed for a flat plate
airfoil at M, = 0.85 using the TSD equation on two Cartesian meshes.!® The results shown in Fig. 5(a)
were obtained using a grid where the points in the vertical direction were determined by an exponential
stretching, whereas the results of Fig. 5(b) were obtained using a vertical grid with a more gradual
quadratic stretching. As shown in Fig. 5(a), the real and imaginary parts of the unsteady lift-curve slope
¢, as a function of reduced frequency k have oscillations which are due to internal grid reflections. As
shown in Fig. 5(b), however, the oscillations have virtually disappeared due to the more gradual stretching
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of the vertical grid. From these results, it is evident that careful attention should be paid to the stretching
of the grid to alleviate or eliminate internal grid reflections for unsteady aerodynamic applications.

Boundary Treatment

In addition to possible internal grid reflections, waves may also reflect off of the outer boundaries of
the mesh, propagate back into the interior of the computational domain, and contaminate the near-field
solution.'® To demonstrate this problem, Fig. 6 shows an example of the effects of boundary reflections.
Again the calculations were performed for a flat plate airfoil at M, = 0.85 using the TSD equation.
As shown in Fig. 6(a), the real and imaginary parts of ¢, have oscillations for low values of k due to
boundary reflections. These oscillations, as well as those that occur from internal grid reflections, are of
concern because they occur in the range of reduced frequency where the calculations need to be most
accurate since this is the frequency range where flutter typically occurs. As shown in Fig. 6(b), however,
when so-called nonreflecting far-field boundary conditions!3 are used, the oscillations no longer occur.
This is because the nonreflecting conditions tend to absorb waves that are incident on the boundaries,
From these results, similar to the treatment of internal grid reflections, it is evident that careful attention
also must be given to an accurate treatment of the far-field boundary conditions to alleviate or eliminate
boundary reflections.

Mesh Movement

A final grid consideration in the development of CFD methods for unsteady aerodynamic and
aeroelastic analysis is how to move or deform the mesh so that it continuously conforms to the
instantaneous shape or position of the vehicle. The mesh movement procedure must be general enough
to treat realistic acroelastic motions of complex aircraft configurations. This can be accomplished by
modeling the mesh with a network of springs as depicted in Fig. 7.1 Each edge of each cell is modeled
using a spring, where the spring stiffness k,,, is inversely proportional to the length of the edge. Points
on the outer boundary of the grid are held fixed and the locations of the points on the inner boundary
(aircraft) of the grid are specified either through the acroelastic equations of motion or the prescribed
unsteady motion. The displacements of the interior nodes then are determined by solving the static
equilibrium equations which result from a summation of forces in each coordinate direction. In practice,
these equations are solved using a predictor-corrector procedure. The displacements of the nodes are first
predicted using a simple linear extrapolation in time of displacements from previous grids given by!*

b, = 285, — 671 by, =260 — 4§21 § = 24" — gn-1 )
Iy Ty Y ¥ Vi 1 i Z

The displacements of the nodes are then corrected by solving the static equilibrium equations defined by

n+l __ kagxm n+l __ kasm n+1 _ Ekmsz,,.
Al AL AR @

using several Jacobi iterations. To demonstrate mesh movement, instantancous meshes are presented for
a half-span airplane pitched nose up 15° in Fig. 8(a) and pitched nose down 15° in Fig. 8(b). With
the spring network the mesh moves smoothly to conform to the instantaneous position of the pitching
airplane. The mesh movement procedure using the network of springs is a general method that can treat
realistic motions as well as aeroelastic deformations of complex aircraft configurations.
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Algorithm Development Considerations

Spatial Discretizations

For either steady or unsteady flow applications, the residual (right-hand-side of the goveming fluid
flow equations) needs to be discretized in space. Generally speaking, there are two types of spatial
discretizations including central differencing and upwind differencing.” Either type of differencing has
advantages and disadvantages depending upon a number of things such as the problem being solved
and the density of the mesh. Specifically, central differencing uses straightforward central differences to
approximate all of the spatial derivatives. This type of approach, though, requires explicitly added artificial
dissipation terms to include dissipation in the solution. The unsteady Euler equations, for example, are
a set of nondissipative hyperbolic partial differential equations which require some form of dissipation
to allow convergence to steady state. Furthermore, the explicitly added dissipation terms involve free
parameters to control the level of dissipation in the problem. In contrast, upwind differencing accounts
for the local wave-propagation characteristics of the flow and thus is naturally dissipative. Consequently,
the upwind-approach does not require the adjustment of free parameters to control the dissipation.

Advantages of the central-difference type spatial discretizations are that they are easier to code and
take less memory than upwind discretizations.? A disadvantage is that they tend to smear shock waves and
contact discontinuities and consequently require finer meshes to achieve similar accuracy. Advantages of
the upwind-difference type spatial discretizations are that they tend to minimize the artificial dissipation
in the problem that is being solved, since they are naturally dissipative, and consequently discontinuities
such as shocks and contacts are captured sharply. This attribute of the upwind discretizations in fact
may be important for CAA calculations to help ensure that the dissipation is small and thus does not
destroy the relatively weak acoustic field. A disadvantage of the upwind methods, however, is that they
are generally more difficult to code and require more memory than central-difference methods.

To demonstrate the sharp shock-capturing features of the upwind approach for the spatial discretiza-
tion of the Euler equations, steady and unsteady results are presented for the NACA 0012 airfoil.® Both
sets of results were obtained using the flux-difference splitting of Roe. The steady calculation was per-
formed for M., = 0.8 and oy = 1.25° with the resulting pressure distribution shown in Fig. 9. For
this case, there are shock waves on the upper and lower surfaces of the airfoil. The shocks are sharply
captured with only one grid point within the shock structure on either surface. Additionally, these sharp
shock capturing features of the upwind method carry over to unsteady cases as well. For example, for the
NACA 0012 airfoil pitching harmonically at M., = 0.755, ag = 0.016°, with an oscillation amplitude
of a; = 2.51° at k = 0.0814, instantaneous pressure distributions at eight points in time during a cycle
of motion are shown in Fig. 10. This is a very interesting case since the shock waves on the upper and
lower surfaces of the airfoil periodically appear and disappear during the cycle of motion. It is clear from
the results of Fig. 10, that similar to the steady-state example, the calculated shock waves are sharply
captured with only one point within the shock structure. 7 7

Temporal Discretizations

For unsteady applications, the temporal accuracy and efficiency of the numerical scheme that is used
to integrate the governing flow equations are of significant importance. Generally, there are two types

of time-integration methods referred to as explicit and implicit.” Either type of integration method has

advantages and disadvantages depending upon a variety of factors including the type of unsteady problem,
the density of the mesh, the characteristic frequency of the problem, etc. Specifically, the most commonly
used explicit temporal discretization (for the integration of the Euler or Navier-Stokes equations) is a multi-
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stage Runge-Kutta time integration. Codes that are based on a Runge-Kutta integration also typically use
local time-stepping, implicit residual smoothing, and multi-grid techniques to accelerate convergence to
steady state. Local time-stepping uses the maximum allowable step size at each grid point as determined
by a local stability analysis. Implicit residual smoothing permits the use of local time steps that are
larger than those required by the CFL (Courant-Friedricks-Lewy) condition. This is accomplished by
averaging the residual with values from surrounding grid points. Multi-grid uses corrections that are
determined on a sequence of grids of different density to also accelerate convergence to steady state.
As for implicit temporal discretizations, factored methods are typically used on structured grids, whereas
relaxation procedures, usually of the Gauss-Seidel form, are used on unstructured grids. The implicit
discretizations may be time-accurate for unsteady problems and they allow large CFL numbers for rapid
convergence to steady state. Generally speaking, codes based on an implicit integration do not require
the above-mentioned techniques for convergence to steady-state, although they usually use local time-
stepping and sometimes use multi-grid.

A typical four-stage Runge-Kutta time-integration scheme that is used to solve the Euler equations
is given by’

Q0 =g
Q(l) = Q(O) _ %_R(Q(O))

At
| 4
(2 = gy _ LAt o ha)
Q Q 3V R(Q )
1At
(B =) _ = (2
0% =0 1ol (o0)
At
(4= o 2 (3)
0 = g Al (q0)
Qn+1 = Q(4)
- (A five-stage scheme is typically used to solve the Navier-Stokes equations.) With this type of scheme
the residual R at any stage of the scheme is evaluated using the flow variables @ computed in the
previous stage. Although the integration constants 1/4, 1/3, 1/2, and 1 are somewhat arbitrarily defined,
the last constant must be unity, and the next-to-last constant is 1/2 for second-order temporal accuracy.
When time accuracy is not important, such as when marching the equations to steady state, the constants
may be defined otherwise, provided that the resulting scheme has good stability and damping properties.
Advantages of the explicit temporal discretization such as that represented by Eq. (3) are that it is simple
to code and takes less memory than an implicit time integration. A disadvantage, however, is that the
explicit method generally is inefficient for unsteady problems because of the very small time steps that
are required for numerical stability.
A typical implicit temporal discretization for gquctg[cd grids is a three-factor, spatially-split method
given by ‘
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Equation (4) is written in the so-called delta form where AQ represents the change in flow variables from
one time step to the next. The equation as written is first-order-accurate in time (a second-order-accurate
version simply adds a time derivative term to the right-hand side) and is efficient because each of the
implicit factors on the lefi-hand side of the equation involves a spatial derivative in only one coordinate
direction. The equation is solved by performing three sweeps through the mesh, each of which uses
one of the implicit factors.



A typical implicit temporal discretization for unstructured grids is a Gauss-Seidel relaxation procedure
given by’
vo] 4 ,5,”,,,7,,4,, - o - o
+(0. . - -
[A—tu >4 (QJ)ASJAQJ + 2,47 (Qm)ASAQ, = -R ©)

m=1 m=1

which is also first-order accurate in time. The relaxation procedure is implemented by first ordering the
cells that make up the unstructured mesh, usually from upstream to downstream. Equation (5) is then
solved by performing two sweeps through the mesh, one in the forward direction and one in the backward
direction. As the sweeps are performed, the equation is solved directly for AQ; while the values for
AQr, are updated in a Gauss-Seidel fashion.

Either implicit method (Eq. (4) or Eq. (5)) requires the calculation of the flux jacobian matrices
represented by A, B, and C in Eq. (4) and by A* and A~ in Eq. (5). Thesec matrices are defined as the
derivative of the respective flux that appears in the residual by the conserved variables Q. Advantages
of the implicit temporal discretizations are that they are numerically stable for large CFL numbers and
consequently enable rapid convergence to steady state.® Furthermore for unsteady applications, they
allow the sclection of the step size based on the physical problem that is being solved rather than on
numerical stability considerations. A disadvantage though, is that they require more memory than an
explicit method, primarily due to having to store the flux jacobians. Also, the linearization and either
factorization (Eq. (4)) or relaxation (Eq. (5)) errors associated with the implicit methods may be too
large for a given step size and thus contaminate the solution. To illustrate this problem, Fig. 11 shows the
effects of step size on instantaneous pressure distributions using the Gauss-Seidel relaxation procedure of
Eq. (5).% The calculations are for the same pitching NACA 0012 airfoil case presented in Fig. 10. Here
though, three sets of results were obtained corresponding to using 250, 1000, and 2500 steps per cycle
of motion. The figure shows the instantaneous pressure distribution at one instant in time (instantaneous
angle of attack a(r) equal to 2.34° which is 69° (k7) into a cycle of motion). These results indicate
that large errors in the strengths and locations of the shock waves on the upper and lower surfaces of the
airfoil can occur when too large of a step size is used (corresponding to 250 steps per cycle). However,
when an appropriately small step size is used (corresponding to 2500 steps per cycle), the correct solution
is obtained with a shock of moderate strength on the upper surface and subcritical flow (no shock wave)
about the lower surface,

Adaption Techniques

Other considerations in the category of algorithm development involve spatial’®> and temporal!®
adaption techniques. These techniques are usually implemented on unstructured grids to produce solutions
of high spatial and temporal accuracy at minimal computational cost. The procedures are applicable to
either steady or unsteady aerodynamic problems, although for the unsteady case, special attention is
required to ensure the time-accuracy of the solution. Also, although temporal adaption is normally
applied only to unsteady cases, that need not necessarily be the case.

As for spatial adaption,’s the technique involves an enrichment procedure to add points in high
gradient regions of the flow. The technique also involves a coarsening procedure to remove points where
they are not needed. This is accomplished by “marking” cells for either enrichment or coarsening using
some type of error indicator to judge the local accuracy of the solution. The objective is to produce
solutions of high spatial accuracy at minimal computational cost by simply minimizing the total number
of cells in the grid. Figures 12(a) and 12(b) show the various combinations of cells that are possible for an
unstructured grid of triangles when using enrichment and coarsening procedures, respectively. It is noted
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that in three dimensions, when using unstructured grids of tetrahedral cells, many more combinations of
enrichment and coarsening are possible, all of which must be accounted for in the coding of the spatial
adaption techniques.

As an example of mesh enrichment for a steady flow,> Fig. 13 shows conical vortex-dominated
(Euler) flow solutions for a 75° swept flat plate delta wing at a supersonic freestream Mach number of
1.4. The wing is at 20° angle of attack and has 10° of yaw. The solution was obtained by adapting
the original coarse mesh of Fig. 13(a) three times to the instantaneous flow. The final result shown in
Fig. 13(b) is a highly accurate solution of the conical Euler equations, produced by using an order of
magnitude fewer grid points than if a globally fine mesh were used. To demonstrate the spatial adaption
procedures for an unsteady case, results were again obtained for the pitching NACA 0012 airfoil case
presented previously. Figure 14(a) shows the instantaneous adapted meshes obtained using three levels of
enrichment on a coarse background mesh and Fig. 14(b) shows the corresponding instantaneous density
contour lines (Ap = 0.02). The instantaneous meshes and density contours are plotted at the same
eight points in time as before. The meshes (Fig. 14(a)) clearly indicate the enrichment in regions near
the shock waves and near the stagnation points. They also show coarsened regions where previously
enriched regions have relatively small flow gradients. The density contours during the cycle (Fig. 14(b))
demonstrate the ability of the spatial adaption procedures to produce sharp transient shock waves. The
results were obtained with a computational savings of a factor of seventeen in comparison to using a
globally fine mesh for the same case.

Analogous to spatial adaption, temporal adaption'® may be used to improve the computational
efficiency of explicit time-integration methods for unsteady aerodynamic applications. Temporal adaption
can be thought of as time-accurate local time-stepping where each grid cell is integrated according to the
local flow physics and numerical stability. The efficiency of the method comes from using small time
steps where they are needed and large time steps where they are not. The “trick” is to accomplish this
in a time-accurate manner. Simply stated, the method integrates small cells with small time steps and
large cells with large time steps, as depicted in Fig. 15. Time accuracy is maintained by bringing all of
the cells to the same time level as dictated by the step size of the largest cell.

To demonstrate the temporal adaption procedure, results were once more obtained for the same
pitching NACA 0012 airfoil problem as before.!® Figure 16 shows calculated results obtained using
temporal adaption and global time-stepping as well as comparisons with the experimental pressure data
of Ref. 17. The two sets of calculated pressures agree very well with each other. This excellent agreement
verifies the time accuracy of the solution computed using temporal adaption, which was obtained at one-
fourth of the CPU time that the global time-stepping solution required. Also, both sets of calculated
results agree reasonably well with the experimental data.

Concluding Remarks

The development of CFD methods for unsteady aerodynamic analysis was described. Special
emphasis was placed on considerations that are required for application of the methods to unsteady
aerodynamic flow problems. Two broad categories of topics were discussed including grid considerations
and algorithm development considerations, and example calculations were presented to illustrate the major
points. Although the primary application of these methods is to relatively low-frequency oscillatory
phenomena such as flutter, the ideas that were presented may be of value to developers of CAA methods
for predicting high-frequency acoustics.
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Fig. 7 Mesh modeling by a network of springs.

airf

PRECEDING PAGE BLANK NOT FiLMED



aue|d
AjswwAg

oueidire Surmond e 1oj SSyssuwl snosuelwelsuy g Sy

"»S1 dn asou (v)

saliepunog
131nQ
paxi4

18



aue|d
AllawwAsg

Pepnpuo) g Sy
"oST uMmop 3sou (q)

saliepunog
1931nQ
paxiy

19




‘Sumnds SOUAIPIP-XNY PIm wipLodre uonnjos g adA)-puimdn
e Bmsn pandwod gz T = 0o pue g'g = Xy e [OHTE Z100 YOVN 24 1oy uonnqrnsp amssaid Apeaig ¢ ‘Sig

f 1 ! 1 ] 171G L-

20



‘Sumnds aousgIp-xny Ym unpuoSpe uonn[os Jong odA1-purmdn ue Susn pandwos P180°0 = ¥ pue *,[¢g = Io
09100 = 90 ‘GG) 0 = ®p 18 Afrestuourrey Suryond fropre <100 VOVN 2y Ioj suonnqustp amssard snoaumueisuy o iy

3/x o/%
0L 8 9 v 2z g o1 0L 8 9 y»y Z g
r T T T | B r _ T T T . e ¥ >l £
olVE =2y T QLT =2y 40" 1=
o¥5’0- = (2)D aG2°L- = (2)D
15
40 99~
¢
° o'l
Jst
r T T T 17 7T T T T T 177 T T T T 177 I T T T 176" L-
o891 =1y . olZL =1y ol 69 = 1y . 82 =33 THot-
o250 = (2)0 ob0T = (3)0 oPET = ()0 060°} = (2) .
- 1 40 99~
- ° ° = -] - -G
4 . s - w01
i J J dst

Bunds aoualayIp-xn|4

luswuadxgy - soeuns iamo o
uswuadxy - sveunS 8ddn o

21



Yuelq Afrevonusut oy sfed smyj



pandwiod $180°0 = ¥ Pue ,1¢'Z = 10 *,910°0 = 00 ‘ggL (0 = ©py
g 10§ (,¥£°C = (+)o 01 Surpuodsanoo) 69

"unpuoS[e uonnjos 1apng Jordun ue Suisn

1 Ajreotuoutreq Suryond [rope 7100 VOVN
= <% ¥e uonnqusIp aumssard snosuelueIsur Syl uo azis dais jo s1apg 11 Sig

s|oho/sdeis gosz | 8|10Ao/sdays sz

30BMNS 18MO|

4 8oeuns Jaddn

069 =1y
H$E2 = (2)0

S'i-

-=1Q'L-

—10°L

4971

(eMMNG BAGF BLANK NCI FILMED

RE

P

23



‘Sampasaid uondepe feneds oy jo sqrerag 1 By

‘Senmiqissod Surussreos (q)

\/ —

senmqissod 1uauryouus (e)

24



'suonenba 13myg resuoo sy Juisn pandwoo
e ! L ! 01 =
PU® *50Z = © 3'T = %y 12 Sutm BYpOp arerd 1ey idoms g ® 103 Juswyouus yssur jo oﬁE«xw %asm €1 S

Uo
nnjos reuy (q) ‘uonnjos Junrels (z)

& &

$S0| ainssaid jej0; -

T ‘

> TAVAVAVAVL S %4

A A R AAVAVAV P A SN,
AV S AVAVAVAVAV A, 4% SNV,
KRB AAAHFOOIERE

N v AAVAVAVAVAVAvAS %y A

Q0,5 STAVAVAVAVAVAVAVAYATS .55 Auﬂ“

D AT S YAYAVAVAVAVAAY S uris g

AVAVAN S S AVAVAVAVATAY 551 474 <>A
AVAVAY KB

SO A
E AVAVA & S e vV A/ \

>
4)4)40)4&“ \‘b‘

|7
i

NE

‘V

g
1

v
[

A
AVAYAY
Y
N

W%
\/\/
A%
N
¥
5
X

4

(sepou ogz) ysaw pardepe - (8pou z156) yssw esieos -

25



"Sumnds 10100A-x0g M unpuo3re uonnios 19pnyg adA)

‘091070 = %0 ‘gg)0 = “pumdn ue Sutsn paindwoo $180°0 = y pue *, 10z = o

W 38 Areoruourey Suryond fope 7100 VOVN 43 103 uonemores uondepe feneds i ‘Jig

"SSYsow snosuwuEISUL (B)

v
TS
WAVl N

i TN A
SIS ZXek

Y,
O NIPIIAR) OIS
R RIOBI R I R
SO TATAVAY o AVAY
TAVAVg Ry arr RN

AVAAV,y, ¥
20 POSOIIIIHA
> ST X/
AV AVA VA' avavav, 51515450 0" S 3
: A WAVATSS

AVAV v AV

)4’A.4>404> K K
AATATAAYA T, NavarsYAVAYAS [ v ¥
N ROGEE g ; 4).4»4»47«»-#.

26



olVE =1

P3pnouo) p1 31y

"SaUT] MOwod Aysusp (q)

ol0E =21

oSSC = 1Y

01T =1Y

0891 = 1y

olTI =2Y

069 = 1)

09T =1}

27



"onbruyos vondepe eiodwe 4 jo sqressp oyl Sumensaqp [ousls rerodway, 61 ‘Siyg

X
y.o © \San s © S 2N
a o
O oo 0O
- sonea
O oanQ p3ieidajul
v
a @) OO0 O a
sanfea
o oo \| pajejodiajur
a OO0 O
e —o-6——- 01y’

28



umnds 10109A-xny ym unpuosye
uonnjos 1oy adA1-purmdn we Jursn paindwon $180°0 = ¥ pue 107 = Lo 0910°0 = %0 “‘gg) 0 = *py
& Areswouurey Suryond [1ouTe 7100 VOVN a1 103 suonngusip amssaud snosuwjueisut jo uoswedwo) 9y ‘Sig

>/x 5/x 3/x 3/x
O'L 80 90 0 Z0 00 0Ot 90 90 »0 Z0O 0°'0 0L 80 90 #»0 Z0D 0D O 90 90 »0 Z0 00
f T T : R T B | I T T T 177 f T T T T 7] T T T T T Jn.rl
nL .
olpt =13 7 oSST =23 LIT=1y 7%
o?$0—=(1)0 - ol T—=0)0 - oSTI—=(@1)0 —C D~

<0

o891 =21 B olll =21 069 = 1)
olS0=0Q)D - ol0T=01)D - o?eT=0)0 -

IW2WI0X] ~ FDDWNS Jamo [ buiggais—awn jogory - -
Wawusdx3 - asouns Lsagan O UONOOPD (0JO00WP| ———

29



i) e
REPORT DOCUMENTATION PAGE gy
OMB No. 0704-0188
Public reporing burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, ssarching existing data sources,
gathering and maintaining the data ded, and completing and reviewing the collection of information. Send comments regarding this burden estimale or any other aspect of this

coRection of information, including suggestions for reducing this burden, 1o Washington Headquariers Services, Direciorale for Information Operations and Reports, 1215 JeHerson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Papsrwork Reduction Project {0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Lsave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
July 1992 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
505-63-50-12

CFD Methods Development Considerations for Unsteady Aerodynamic Analysis

6. AUTHOR(S) John T. Batina

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
NASA Langley Research Center REPORT NUMBER
Hampton, VA 23665-5225

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
National Aeronautics and Space Administration ’ AGENCY REPORT NUMBER
Washington, DC 20546-0001 NASA TM 107644

11. SUPPLEMENTARY NOTES
Invited Paper Presented at the Workshop an Computational Aeroacoustics
Hampton, Virginia, April 6-9, 1992

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 02

13. ABSTRACT (Maximum 200 words)
The development of computational fluid dynamics (CFD) methods for unsteady aerodynamic analysis is described. Special
emphasis is placed on considerations that are required for application of the methods 1o unsteady aerodynamic flow
problems. Two broad categories of topics are discussed including grid considerations and algorithm development
considerations, and example calculations are presented fo illustrate the major points. Although the primary application of
these CFD methods is {o relatively low-frequency oscillatory phenomena such as fiutter, the ideas that are presented may
be of value to developers of computational asroacoustics methods for predicting high-frequency acoustics.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Computational Fluid Dynamics 30
Unsteady Aerodynamics 16. PRICE CODE
Asroacoustics AD3
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified
. Standard Form 298 (Rev. 2-B9
NSN 7540-01-280-5500 Pr.scrbaord by Aang' Sud. S9-18 )

208-102




